3.1.89 \(\int \frac {\text {sech}^4(c+d x)}{(a+b \text {sech}^2(c+d x))^2} \, dx\) [89]

Optimal. Leaf size=83 \[ \frac {(a+2 b) \tanh ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{2 b^{3/2} (a+b)^{3/2} d}-\frac {a \tanh (c+d x)}{2 b (a+b) d \left (a+b-b \tanh ^2(c+d x)\right )} \]

[Out]

1/2*(a+2*b)*arctanh(b^(1/2)*tanh(d*x+c)/(a+b)^(1/2))/b^(3/2)/(a+b)^(3/2)/d-1/2*a*tanh(d*x+c)/b/(a+b)/d/(a+b-b*
tanh(d*x+c)^2)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 83, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {4231, 393, 214} \begin {gather*} \frac {(a+2 b) \tanh ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{2 b^{3/2} d (a+b)^{3/2}}-\frac {a \tanh (c+d x)}{2 b d (a+b) \left (a-b \tanh ^2(c+d x)+b\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]^4/(a + b*Sech[c + d*x]^2)^2,x]

[Out]

((a + 2*b)*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(2*b^(3/2)*(a + b)^(3/2)*d) - (a*Tanh[c + d*x])/(2*b*
(a + b)*d*(a + b - b*Tanh[c + d*x]^2))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 393

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(-(b*c - a*d))*x*((a + b*x^n)^(p
 + 1)/(a*b*n*(p + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x]
 /; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])

Rule 4231

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rubi steps

\begin {align*} \int \frac {\text {sech}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx &=\frac {\text {Subst}\left (\int \frac {1-x^2}{\left (a+b-b x^2\right )^2} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=-\frac {a \tanh (c+d x)}{2 b (a+b) d \left (a+b-b \tanh ^2(c+d x)\right )}+\frac {(a+2 b) \text {Subst}\left (\int \frac {1}{a+b-b x^2} \, dx,x,\tanh (c+d x)\right )}{2 b (a+b) d}\\ &=\frac {(a+2 b) \tanh ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{2 b^{3/2} (a+b)^{3/2} d}-\frac {a \tanh (c+d x)}{2 b (a+b) d \left (a+b-b \tanh ^2(c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.13, size = 88, normalized size = 1.06 \begin {gather*} 4 \left (\frac {(a+2 b) \tanh ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{8 b^{3/2} (a+b)^{3/2} d}-\frac {a \sinh (2 (c+d x))}{8 b (a+b) d (a+2 b+a \cosh (2 (c+d x)))}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]^4/(a + b*Sech[c + d*x]^2)^2,x]

[Out]

4*(((a + 2*b)*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(8*b^(3/2)*(a + b)^(3/2)*d) - (a*Sinh[2*(c + d*x)]
)/(8*b*(a + b)*d*(a + 2*b + a*Cosh[2*(c + d*x)])))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(221\) vs. \(2(71)=142\).
time = 1.92, size = 222, normalized size = 2.67

method result size
derivativedivides \(\frac {-\frac {2 \left (\frac {a \left (\tanh ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 b \left (a +b \right )}+\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 b \left (a +b \right )}\right )}{a \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+b \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b}-\frac {\left (2 b +a \right ) \left (-\frac {\ln \left (\sqrt {a +b}\, \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}+\frac {\ln \left (\sqrt {a +b}\, \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}\right )}{b \left (a +b \right )}}{d}\) \(222\)
default \(\frac {-\frac {2 \left (\frac {a \left (\tanh ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 b \left (a +b \right )}+\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 b \left (a +b \right )}\right )}{a \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+b \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b}-\frac {\left (2 b +a \right ) \left (-\frac {\ln \left (\sqrt {a +b}\, \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}+\frac {\ln \left (\sqrt {a +b}\, \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}\right )}{b \left (a +b \right )}}{d}\) \(222\)
risch \(\frac {a \,{\mathrm e}^{2 d x +2 c}+2 b \,{\mathrm e}^{2 d x +2 c}+a}{d b \left (a +b \right ) \left (a \,{\mathrm e}^{4 d x +4 c}+2 a \,{\mathrm e}^{2 d x +2 c}+4 b \,{\mathrm e}^{2 d x +2 c}+a \right )}+\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {a b +b^{2}}+2 b \sqrt {a b +b^{2}}-2 a b -2 b^{2}}{a \sqrt {a b +b^{2}}}\right )}{2 \sqrt {a b +b^{2}}\, \left (a +b \right ) d}+\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {a b +b^{2}}+2 b \sqrt {a b +b^{2}}-2 a b -2 b^{2}}{a \sqrt {a b +b^{2}}}\right ) a}{4 \sqrt {a b +b^{2}}\, \left (a +b \right ) d b}-\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {a b +b^{2}}+2 b \sqrt {a b +b^{2}}+2 a b +2 b^{2}}{a \sqrt {a b +b^{2}}}\right )}{2 \sqrt {a b +b^{2}}\, \left (a +b \right ) d}-\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {a b +b^{2}}+2 b \sqrt {a b +b^{2}}+2 a b +2 b^{2}}{a \sqrt {a b +b^{2}}}\right ) a}{4 \sqrt {a b +b^{2}}\, \left (a +b \right ) d b}\) \(390\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(-2*(1/2*a/b/(a+b)*tanh(1/2*d*x+1/2*c)^3+1/2*a/b/(a+b)*tanh(1/2*d*x+1/2*c))/(a*tanh(1/2*d*x+1/2*c)^4+b*tan
h(1/2*d*x+1/2*c)^4+2*a*tanh(1/2*d*x+1/2*c)^2-2*b*tanh(1/2*d*x+1/2*c)^2+a+b)-(2*b+a)/b/(a+b)*(-1/4/b^(1/2)/(a+b
)^(1/2)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2+2*tanh(1/2*d*x+1/2*c)*b^(1/2)+(a+b)^(1/2))+1/4/b^(1/2)/(a+b)^(1/2
)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2-2*tanh(1/2*d*x+1/2*c)*b^(1/2)+(a+b)^(1/2))))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 165 vs. \(2 (74) = 148\).
time = 0.56, size = 165, normalized size = 1.99 \begin {gather*} -\frac {{\left (a + 2 \, b\right )} \log \left (\frac {a e^{\left (-2 \, d x - 2 \, c\right )} + a + 2 \, b - 2 \, \sqrt {{\left (a + b\right )} b}}{a e^{\left (-2 \, d x - 2 \, c\right )} + a + 2 \, b + 2 \, \sqrt {{\left (a + b\right )} b}}\right )}{4 \, \sqrt {{\left (a + b\right )} b} {\left (a b + b^{2}\right )} d} - \frac {{\left (a + 2 \, b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a}{{\left (a^{2} b + a b^{2} + 2 \, {\left (a^{2} b + 3 \, a b^{2} + 2 \, b^{3}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (a^{2} b + a b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )}\right )} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

-1/4*(a + 2*b)*log((a*e^(-2*d*x - 2*c) + a + 2*b - 2*sqrt((a + b)*b))/(a*e^(-2*d*x - 2*c) + a + 2*b + 2*sqrt((
a + b)*b)))/(sqrt((a + b)*b)*(a*b + b^2)*d) - ((a + 2*b)*e^(-2*d*x - 2*c) + a)/((a^2*b + a*b^2 + 2*(a^2*b + 3*
a*b^2 + 2*b^3)*e^(-2*d*x - 2*c) + (a^2*b + a*b^2)*e^(-4*d*x - 4*c))*d)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 664 vs. \(2 (74) = 148\).
time = 0.40, size = 1569, normalized size = 18.90 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

[1/4*(4*a^2*b + 4*a*b^2 + 4*(a^2*b + 3*a*b^2 + 2*b^3)*cosh(d*x + c)^2 + 8*(a^2*b + 3*a*b^2 + 2*b^3)*cosh(d*x +
 c)*sinh(d*x + c) + 4*(a^2*b + 3*a*b^2 + 2*b^3)*sinh(d*x + c)^2 + ((a^2 + 2*a*b)*cosh(d*x + c)^4 + 4*(a^2 + 2*
a*b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a^2 + 2*a*b)*sinh(d*x + c)^4 + 2*(a^2 + 4*a*b + 4*b^2)*cosh(d*x + c)^2 +
 2*(3*(a^2 + 2*a*b)*cosh(d*x + c)^2 + a^2 + 4*a*b + 4*b^2)*sinh(d*x + c)^2 + a^2 + 2*a*b + 4*((a^2 + 2*a*b)*co
sh(d*x + c)^3 + (a^2 + 4*a*b + 4*b^2)*cosh(d*x + c))*sinh(d*x + c))*sqrt(a*b + b^2)*log((a^2*cosh(d*x + c)^4 +
 4*a^2*cosh(d*x + c)*sinh(d*x + c)^3 + a^2*sinh(d*x + c)^4 + 2*(a^2 + 2*a*b)*cosh(d*x + c)^2 + 2*(3*a^2*cosh(d
*x + c)^2 + a^2 + 2*a*b)*sinh(d*x + c)^2 + a^2 + 8*a*b + 8*b^2 + 4*(a^2*cosh(d*x + c)^3 + (a^2 + 2*a*b)*cosh(d
*x + c))*sinh(d*x + c) - 4*(a*cosh(d*x + c)^2 + 2*a*cosh(d*x + c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a + 2*b)
*sqrt(a*b + b^2))/(a*cosh(d*x + c)^4 + 4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh(d*x + c)^4 + 2*(a + 2*b)*cos
h(d*x + c)^2 + 2*(3*a*cosh(d*x + c)^2 + a + 2*b)*sinh(d*x + c)^2 + 4*(a*cosh(d*x + c)^3 + (a + 2*b)*cosh(d*x +
 c))*sinh(d*x + c) + a)))/((a^3*b^2 + 2*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^4 + 4*(a^3*b^2 + 2*a^2*b^3 + a*b^4)*d
*cosh(d*x + c)*sinh(d*x + c)^3 + (a^3*b^2 + 2*a^2*b^3 + a*b^4)*d*sinh(d*x + c)^4 + 2*(a^3*b^2 + 4*a^2*b^3 + 5*
a*b^4 + 2*b^5)*d*cosh(d*x + c)^2 + 2*(3*(a^3*b^2 + 2*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^2 + (a^3*b^2 + 4*a^2*b^3
 + 5*a*b^4 + 2*b^5)*d)*sinh(d*x + c)^2 + (a^3*b^2 + 2*a^2*b^3 + a*b^4)*d + 4*((a^3*b^2 + 2*a^2*b^3 + a*b^4)*d*
cosh(d*x + c)^3 + (a^3*b^2 + 4*a^2*b^3 + 5*a*b^4 + 2*b^5)*d*cosh(d*x + c))*sinh(d*x + c)), 1/2*(2*a^2*b + 2*a*
b^2 + 2*(a^2*b + 3*a*b^2 + 2*b^3)*cosh(d*x + c)^2 + 4*(a^2*b + 3*a*b^2 + 2*b^3)*cosh(d*x + c)*sinh(d*x + c) +
2*(a^2*b + 3*a*b^2 + 2*b^3)*sinh(d*x + c)^2 + ((a^2 + 2*a*b)*cosh(d*x + c)^4 + 4*(a^2 + 2*a*b)*cosh(d*x + c)*s
inh(d*x + c)^3 + (a^2 + 2*a*b)*sinh(d*x + c)^4 + 2*(a^2 + 4*a*b + 4*b^2)*cosh(d*x + c)^2 + 2*(3*(a^2 + 2*a*b)*
cosh(d*x + c)^2 + a^2 + 4*a*b + 4*b^2)*sinh(d*x + c)^2 + a^2 + 2*a*b + 4*((a^2 + 2*a*b)*cosh(d*x + c)^3 + (a^2
 + 4*a*b + 4*b^2)*cosh(d*x + c))*sinh(d*x + c))*sqrt(-a*b - b^2)*arctan(1/2*(a*cosh(d*x + c)^2 + 2*a*cosh(d*x
+ c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a + 2*b)*sqrt(-a*b - b^2)/(a*b + b^2)))/((a^3*b^2 + 2*a^2*b^3 + a*b^4
)*d*cosh(d*x + c)^4 + 4*(a^3*b^2 + 2*a^2*b^3 + a*b^4)*d*cosh(d*x + c)*sinh(d*x + c)^3 + (a^3*b^2 + 2*a^2*b^3 +
 a*b^4)*d*sinh(d*x + c)^4 + 2*(a^3*b^2 + 4*a^2*b^3 + 5*a*b^4 + 2*b^5)*d*cosh(d*x + c)^2 + 2*(3*(a^3*b^2 + 2*a^
2*b^3 + a*b^4)*d*cosh(d*x + c)^2 + (a^3*b^2 + 4*a^2*b^3 + 5*a*b^4 + 2*b^5)*d)*sinh(d*x + c)^2 + (a^3*b^2 + 2*a
^2*b^3 + a*b^4)*d + 4*((a^3*b^2 + 2*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^3 + (a^3*b^2 + 4*a^2*b^3 + 5*a*b^4 + 2*b^
5)*d*cosh(d*x + c))*sinh(d*x + c))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\operatorname {sech}^{4}{\left (c + d x \right )}}{\left (a + b \operatorname {sech}^{2}{\left (c + d x \right )}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)**4/(a+b*sech(d*x+c)**2)**2,x)

[Out]

Integral(sech(c + d*x)**4/(a + b*sech(c + d*x)**2)**2, x)

________________________________________________________________________________________

Giac [A]
time = 0.60, size = 139, normalized size = 1.67 \begin {gather*} \frac {\frac {{\left (a + 2 \, b\right )} \arctan \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + a + 2 \, b}{2 \, \sqrt {-a b - b^{2}}}\right )}{{\left (a b + b^{2}\right )} \sqrt {-a b - b^{2}}} + \frac {2 \, {\left (a e^{\left (2 \, d x + 2 \, c\right )} + 2 \, b e^{\left (2 \, d x + 2 \, c\right )} + a\right )}}{{\left (a b + b^{2}\right )} {\left (a e^{\left (4 \, d x + 4 \, c\right )} + 2 \, a e^{\left (2 \, d x + 2 \, c\right )} + 4 \, b e^{\left (2 \, d x + 2 \, c\right )} + a\right )}}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x, algorithm="giac")

[Out]

1/2*((a + 2*b)*arctan(1/2*(a*e^(2*d*x + 2*c) + a + 2*b)/sqrt(-a*b - b^2))/((a*b + b^2)*sqrt(-a*b - b^2)) + 2*(
a*e^(2*d*x + 2*c) + 2*b*e^(2*d*x + 2*c) + a)/((a*b + b^2)*(a*e^(4*d*x + 4*c) + 2*a*e^(2*d*x + 2*c) + 4*b*e^(2*
d*x + 2*c) + a)))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\mathrm {cosh}\left (c+d\,x\right )}^4\,{\left (a+\frac {b}{{\mathrm {cosh}\left (c+d\,x\right )}^2}\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cosh(c + d*x)^4*(a + b/cosh(c + d*x)^2)^2),x)

[Out]

int(1/(cosh(c + d*x)^4*(a + b/cosh(c + d*x)^2)^2), x)

________________________________________________________________________________________